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Abstract This paper reviews estimation problems with missing, or hidden data. We formulate this problem in the context of Markov
models and consider two interrelated issues, namely, the estimation of a state given measured data and mode! parameters, and the

estimation of model parmeters given the measured dald alone. We alsn consuﬁer situations where the measured data 1s, itseif, incomplete

in somie sense. We deal with various combinat

i INTRODUCTION

We are concerned here with the description, or modelling, of

physical phenomena. T is typically the case, that technological
constraints imply that not all aspects of the phenomena can be
measured. We will use the notion of “state” or “complete data”
to describe the underlying phenomena and the notion of “out-
put” for the actual measured data.

We will focus on phenomena which evolve in time such that the
current output depends on past history and events. Such phe-
pomena are referred to as “dynamic systems”. The current
“state” 15 used to summarize the past history so that the subse-
guent behaviour depends only on the current state and subse-
quent events. A model describing this kind of behavicuris called
1 *Markov model”. The notion of Markov model is a very pow-
erful toot which, by eppropriate cholce of stale, can represent a
very wide class of dynamic phenomena. (Davis, 1993).

As an {admittedly oversimplified) example, consider a hypo-
thetical model of the height (h) of a river at time t that depends
on rainfall (1) as foliows;

B oy o dal < )
k=1

i.c., the current height is an exponentially decaying sum of the
past rainfall. A corresponding Markovian representation s

Rppp ™= OX + or,_y {2)

hy = x, (3}

Mote that, in this simple example. the scalar h, qualifies as the
state at time t. However, usually the state will include other, non
meusured, variables.

The concept of Markoy models is very powerfu and can be ap-
plied to a wide range of problems arising n a varety of disci-
plines including u,okwy engineering, m.mddumrmn econom-
ics, ete. Indeed, the Lhaikn% is w find a problem that cannot be
put into this framework,

In general, Markov models take different forms depending on
the nature of the phenomena and of the measurement system. We
can thus speak of

ites and observations.

- deterministic or stochastic depeading on whether the next
state is precisely determined by the current state or has some
probability distribution

- continuous or discrete time depending on whether the state
evalution is described by a ditferential or difference equation

- continuous of discrete state (or measurement) depending
on whether or not the state (measurement) has a continuum of
vahues (e.g. as in the river height example) or a finite set of values
(e.g. as is the case in binary communication channels).

Of course, there exist similarities between these different de-
scriptions and some are clearly limiting cases of others (Middle-
ton and Goodwin {1990)). Also, it is commoniy the case, that the
state will evolve in continuous time whereas the measurement
system will be restricted to discrete times (sampled) and/or dis-
crete measurements (quantization). This s a farge topic in its
own right - see for example Feuer and Goodwin (1995), Gevers
and L (1993). Williamson (1991},

For reasons of space constraints, we Hmit ourselves here to a
subset of the above issues and consider only tinear, stochastic,
discrete time and, discrete and continuous state systems.

So far, we have used the term missing (or hidden} data to de-
seribe the fact that the available measurements do not capture the
complete state of the system. However, there is occasionally a
need to consider another form of missing data where the mea-
surement pattern itself may be irregular (in time) dog to a num-
ber of possible mechanisms including sensor failure, lost data
records, hurman intervention, outliers etc, Isaksson (1993). We
lump these issues also under the heading of missing data. The
general tools that we describe can be applied to these more gen-
eralt problems.

The treatment given this paper, at times, sacrifices mathematical
rigor for the sake of clarity of presentation. For a complete ex-
position the reader 1s referred to the references given at the end
of the paper and recent books deveted to the topic of Hidden
Markov Models e.g. Elliott, Aggsum, Moore (1995).

2 DISCRETE STATE HIDDEN MARKOV MODELS

In this section we will (briefly) describe discrete time - discrete
state (hidden) Markov tinear models.

We assume that the state x, at time t, takes n possible values
5, ... s, Forconvenience, we describe the states by aset of indi-
cator functions, i.e. we write

ss=ef o i=1 ...n {4)



where ef'ts the i*" column of an n % nidentity matrix. Similarly,
we assume that the outpuf v, at time t, takes m possible values,
9, ... 0y where

o=l i=1, ..,m {5}
Let
a; = prob{x,, = ¢fix, = el {6)

Note that the Markov property is implicit in (6). Also note that
weassume a;is independent of . i.e. we restrict attention Lo sta-

tionary models.

Similarly, let

Cij = prob{y, = &flx, = le} (N
Clearly, we haveforall j = 1, ... ,n
Sag=1;5 > Cy=1 (%)
i i=t
We also assume that the initial state satisfies
pix, = s} = m %)

Note that the above model is characterized by a finite numberof
parameters consisting of the entries a,; Cy, 7 in (A, C 7wh. We
denote these parameters by 8.

We can then evaluate the following conditional expectation

Elxxos 81 = Ax (1)
E{ylx, 1 8} = Cx (113
Note that E{x,, %8} = e for any i although x. . = & for

some j. Hence writing

Vi = X T AX, (12)

Wy = yIMCXI (13)
we cap express the model in the form:

Xt = AXxy v (14}

yoo= Cx  + w, (15}
where from (103, (113

Eivlx,) = 0; Efwlx} = (0 (16)

3 ESTIMATION PROBLEMS

in the sequel we will be interested in two problems; namely

{1} State estimation: Say we are given a time series of data
Y1 o ¥+ what can we say about the corresponding state se-
quence X, ... X, assuming we know the model (i.c. the param-
eters )7

{11y Parameter estimation: Say we are given the data sequence
¥, - ¥y what can we say about the model?

These questions are addressed below

4 STATE ESTIMATION FOR DISCRETE STATE-
MARKOY MODELS

State estimation depends ppon the criterion one employs. A
common choice is to maximize the likelihood function. Say we
are  interested  in estimating X,  given  data

Yi = el ¥ el Then two possible criteria are (Rabiner
i

(198M).

(iy  The marginal likelthood; i.e.

v{iy = problx, = elly,, .. ,ysh1 =2t =T (17}

{(iiy The joint likelihood; i.e.

Dliy, i = problx, = el o oxe = eblyy v} (18)

In the gaussian case, these two criteria lead to the same estimate.
However, this is, in general, not the case.

To generate the estimation for the first criteria, let us define
afi) = probly, ...y, =m=efhl €1 T {19}

This function can be generated recursively as follows:

i) = ﬁ(i.)ciii
Oy = | D ey |Gy 1=t T (20)
j=1
Note that
probey;, . yi) = > (i) @n

i=1
Similarly, we define
Bi) = probly,, . . \yadx = ef) 22
which can be generated recursively as follows:
B0 = 1 (23)

n
pliy = zays’g

j=1

jB!—HU);l =t T—1 {24

10

Then, using (17), we have

e 7 —



a D ()

) = probly, ... yql

oadbgdn
> B
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Finally, the estimation of x, which maximizes the marginal I-
kelihood is

X, = arg max by ()] (26}
Iaisa !

Optimization of the second critedon (18} can be done using Dy-
namic Programming and leads to the Viterbi algorithm (Forney
(19730,

Detine

800 = max probix. X% = ey, el 2N

|
Mote that 8,(1) satisfies the following recursion
&y =wC, ;i=1 . .n (28)

(29)

G, = {T\'I;xxég(j‘;zlii]iii_
i

In addition we need to caleulate the optimal state at time t—1 giv-
en %, = e, namely,

i

X, (e™ = arg max EKSHU)'LM] )
Pt ;
Then, clearly, the optimal likelihood is given by

max [&+(i)]
= Sbr Y o

and the optimal terminal state is

X = arg max O(1) (323

Finally, the optimal state trajectory can be computed recursively
using a backward iteration as in {30)

Xy = Rea(x) (33)

5 PARAMETER ESTIMATION

Next, we turn to the problem of pacameter estimation. In princi-
ple, this can be achieved by simply maximizing the likelthood
function given in (21} with respect to 0. This is a formidable
task. However, the likelihood function for the complete data
(%, ... xpand y, ... yy)is arclatively simple function of 8. This
suggests an iteratively procedure in which, given an estimate 8%
aof the parameters., we first find the expected value of the com-
plete Jog likelihood function using 0% and the data v, ... yo

This is thenmaximized o find anew estimate 8" ™Y, This proce-
dure is commoanly referred to as the Expectation, Maximization
(EM) algorithm. We take a brief diversion in the next section to
describe this algorithm.

& THE EM ALGORITHM

In our description of the EM procedure, we will cover general
problems and thus we do not restrict curselves to discrete data.
Denote by fi(x, yviB) the density function of the complete data giv-
en the parameters 0 and by g{yi0) the density of the measure-
ment ¥ given 8. Generally, we would like to generate the maxi-
mum likelihood estimate of 9 i.e. the parameters that maximize
L() where

L) = logal(yit) (34)

It is often true that any attempt to directly solve this probiem is
very difficult. Instead, as suggested at the end of the last section,
we assume we have some estimate 8 of 0, and evaluate

6. 8%) = B{ log f(x. ¥y, 89} (35)

as a function of &
We call this the E {expectation) step.

The M {maximization} step then chooses

Bl = arg max Q(f, B (36
and hence
Qe+t girt = Qe gw) (37

To appreciate this algorithm. we note that
£, y18) = k{xly, D)yl (38)

where k(xly, §)is the conditional distribution of x given y.

Then clearly from (35), (38) we have
QIO. B = L) + B[ log kixly, Bily, 00} (39)

Using Jensen's inequality, it can readily be shown (see Lemuma
A3 of Appendix A) that

Ellog kixly, )y, 87 = Ellog k{xly, 6y, 87} {40y
with equality if and only if
Kixty, 8] = kixly.f}  ae. 40
Using (407 and (377 it is clear that

Liae ) = Lo (42

with equality if and only if equality holds in (37), {410

This means that any generated sequence {L(B®)} willconverge
inview of {42) and, under some regularity assumptions, this will



imply that {8} witl converge to same vaiue 87 which will bea
jocal maximum of the lkelihood function (Dempster etal
{1977), Boyles(1983), Wu (1983}).

7 PARAMETER ESTIMATION FOR DISCRETE
STATE MARKOY MODELS

In order to apply the EM algorithm to the case at haad we calco-
late

Q0,80 = E{iogpr{)b{m = g’, LKy = el (433

1

!

3 A i
Y= CJH;’ - ¥ e;‘f;’}lyﬁ =l ¥y = g 0%}

it

To facilitate this, we first evaluate

P N \ 3 - ;
Sy = pFOD’[XI = {3:‘,X1+1 - Ef;}ﬁ, .}"rl(.}} (44}

= a(iaC Py 1S =T~

where we have used (19}, (22).

1t follows that (see also Rabiner (1983))

Q(B,ﬁ(p)] = E{ §0§§{E1,ﬂ»2ilai3ig 211‘3"'1'»1C¥1‘| Cl-ri'rgl
i = C,n: o ¥T T e;};‘;gm}
T=1
= E{logm, + > loga,
1=
B,
+ D togCy lys o yr8)
t=f
n n T=1
= > > > EMjlogay
el =1l
+ > yPiitlogn,
i=1
5
+ yPirlog C;;
S ' (45)

Note that, in equation (46), the superscript () denotes that the
term s evaluated using 6P

Maximizing (46) leads to the standard Baum-Welch (Baum et.al
{1970)) estimates for & namely

Tt
> ErL)

agj!’"“] el ree—— Tin (46)

Z D ERGL)

I ojei

1-

et =y 7)

"
- P T
Z H (j}
t=t
- (such that v, = ¢ )
coen s P TR K (48)

> )y

t=1

Equations (46) to (48) constitute the re-estimation {or M) step of
the EM algorithm. As stated carlier, subject to reasonable condi-
tioms, this will converge to a (focal) maximum of the likelihood
function.

Further details on the application of the EM algorithm to Dis-
crete State Hidden Markov Models may be found in Baum and
Petrie (1966), Baum et.al (1970). Rabiner (1989},

& CONTINUOUS STATE MARKOV MODELS

Next we consider the situation where the state can take a contin-
sum of values. It Is now convenient to let x, take values in R,

We define a contintous state (stationary) Markov model as fol-
lows:

= A¥, + v, {49}

y, = Cx, + w, (5

where x, € R%y, € R™and [v,} and {w,} are mutually inde-
peadent iid sequences, Note that A and C arc assumed to be
constant matrices of appropriate dimensions. The model given
in {49), (50 is deceptively similar to the one in (14}, (13). Note,
however, that the interpretations are guite different. For exam-
ple, in {49), {50) the matrices A and C donothavea probabilistic
interpretation ag in the discrete state case.

As before, we assume that {v,] constitutes the measured data
and typically n > m.

) STATE ESTIMATIONFOR CONTINUOUS STATE
MARKOV MODELS

Adding the assumptions that the distributions for Ivid, [w,land
x, are independent gaussiaa with means O, 0, g and covariances
Q.R and I, respectively then the optimal state estimate prob-
iem becomes relatively easy because one can readily compute
the conditional distributions. This leads to the celebrated Kal-
man Filter {Anderson and Moore ( 1579}).

Denote by [%,,k, Zﬁk') the condition mean and covariances of x,

given data up o time k. The filtered estimates are then generated
recursively by:

S = o+ T CHCEL, LT+ R (

L
—

(ylft - C)A(HH:)
et = Siaw = ZaaCHCECT+ R CEL, (5D)
Kpw = A, (33)

21--li1 - AEIIEAT + Q (54}

R, [ -



with Ty = X, = .
Note that the above fllter uses the complete model, Le. we have
used A, C,Q, R, X . Although we have stated this result under
& gaussian assumption, it turas out (Anderson and Moare ( 1979)
that the filter is also the Best Linear Estimator under others dis-
tributions.

It is also possible to obtain “smoothed” estimates by evaluating
the condition distribution of x, given the whole data (y, ... y,.
Using a procedure, analogous to that which we found in the dis-
crete data case, itls possible to use forward (i.e. filtered) recur-
sions and backward recursions (see {33)) to evaluate (Anderson
and Moore (1979}, p. 189}, Shumway and Stoffer (1982)) the
smovthed values:

~

IR R P 0 Kor ‘Y;(I[—J_} {33)

Zonr = 2w H I (Ey —~ BN\ R (56}
where

Joo = 2. |A45‘Zl;f‘ (573

and with final boundary conditions, Zypp, Zqr given by (513 1o
(54).

Also, tfor future use we need the covariance, Z,,_ . between
% and X, giveny, ... vy Thisquantity satisfies the following
backward recursion

Zipen = Zt—n:—-zﬁwg {53}

. . T
+1 --I[.Xl.lw 1 Az«-ln--l‘]‘?(--:

with

T = (E - z'l'é'i'—fIC-I.(CE'E‘I'I'-ICT + R) iC) (39)

AZp_ o

14 PARAMETER KSTIMATION FOR CONTINUOUS
STATE MAREOY MODELS

The unknown parameters are the entries in A, C,Q, R, 11, B, Us-
ing system theory principles, and since we do not have the pro-
babilistic interpretation of C as in the discrete state case. then C
can always be taken as a known matrix,

Thus, the model depends upon the parameters in
B = (A, R.u, Z,). There are many possible criteria one could
employ, to estimate the parameters in the model (see Ljung
{19871, For reasons of space, we again restrict ourselves to
maximum likelihood. As in the discrete state case, direct maxi-
mization of the likelihood function is, in most cases, virtually
very difficult. Hence, we briefly describe the application of the
EM algorithm in the context of the model as given in Section §
and 9.

Aguin based on a Gaussian assumption, the log-likelihood for
the complete data is

loglprobix, o . xp ¥, . ydB8)Y

fi
[

A% Q7 — Ak

Sty = Cx Ry, - Cxy

- %iog Ri - 1
1=t {60

The E step consists of finding the expectation of the expression
in {60} leading to {see also Shumway and Stoffer {19823, Shum-
way (1984))

QB,07) = — LiogIx |

boed 54 v -0 a0 !
- :‘)'[I‘d(,t, 2 zm_ + A Ey - sl p — u

T
- Elog W

- -é—tmce{Q’g(S'm — afst) ~ smar

+ ASWAT)

T
ilogiRi

,I. N .
| R a3} o lm
- Ef.mcc{R : g E(yI - Cxﬂ-)(yl - ,x}fr)

| :

g A T ]
+ AZEATH %N
where
T o o
. \ Al alp
Sy, = Z(Eﬁ&m + x‘x) (62)
=2
T . ¥
. . T AP ,\‘Lpl
Sf;,) = l(ztp],m + M‘r’uwrr) (63)
: TR
P S & Plaip e
sy = Z( W+ Rk ) (64)
t=1

and the superscript (p) denotes filtered and smoothed estimates
generated by equations (51) to (57) using @™

It is quite straightforward to maximize the expression given in
{61) with respect to 8 leading to:-

, AP} T
pi wip) L)
A -t - x‘”xt--lr’!‘

t=2

- . o
T a fpl ey
w4
B W T XX e
=2

/ (653



ol L
Qr T
t [ - ” T
Py B
(56)
T
R 1) e C\tw} (67)
t=1
+ CENCT)
Wl = R (68)
S0t = E0 (69)

Actually, the shove expressions also apply when Cls time-vary-
ing. Thus missing values of v can be treated by simply setting
the corresponding value C, to zero. (see Shumway and Stofler
(1982)).

For further details of the application of the EM algorithm to con-
tinusous state models see Kuczera (19873, Abraham and Chuang
(1993}, Tanaka and Katayama (1990}, Ansley and Khan (1983},
Harvey and McKenzie (1984), Jones{1980), Khon and Ansey
(1986}, Little and Rubin (1 587), McGiffin and Murthy (1980),

(1932}, Miller and Ferreiro (198-%) Rosen and Porat (1986),
Shumway and Stoffer (1982), Shumway (1984}, Isaksson
{1993), Feder and Weinstein (1985).

11 INNOVATIONS MODELS

In the stationary data case, the signal {y{t)} that was generatad
by the general Markov mode! (49), (50} has an alternative form
which, whilst preserving the generality of the description, de-
pends upon a significantly fewer number of unknown parame-
ters. This, and the resuiting structure, will turn out to be helpful
insimplifying the parameter estimation problem. We will gener-
ate this alternative representation using the Kalman filter. Thus,
consider equations (51) to (54).

It can be readily seen that the “‘imnovations sequence’,
n = (_yt - C)ﬂ:m_i) is orthogonal to the data y, ... y,_,, 1.c.itis
a Martingale difference sequence. It is also known (Goodwin
and Sin (1983}) that subject to mild regulatory conditions, the
covariance X ., converges to a constant mdtrix T for farge t.

Hence, putting K = AZC[CZCT + RJ , using z, to denote
X, ; and assuming steady state, (51) to (54) can be rewritien as

Z,., = Az, + Kn, {70

yo= Lz, + 0, 4

This can be viewed as an alternative Markov model for the sys-
tem. For simplicity we now restrict attention to the single output
case. However, similar constructions apply to the multivariable
case (Kailath (1980)). Without loss of generality we may take
{C, A} to be in observer canonical form (Geodwin and Sin
(1983}, i.e. we may take

3--‘ d’. i 0 1\3.[
A:E.Z:O\\i;K= : (72)

—a 00 K]
C=1{10...0 (73)
Using (72}, (73)itis quite straightforward to successively elimi-

nate [z} from (70), (71) leading to the foilowing simpler
ARMA maodel:

gy = CgTm, L Biwhy = o (743
where

Ag™h=1+ag™ '+ .. +ag™® (75)

Clgh=t+cg '+ .. +cg7® (76}

and where g7 is the unit delay operator and

= a -+ ki; i=1, ....n (77)

A useful trick is now to replace the original system parameter-
ization by the above model which s directly parameterized us-
ing the Kalman gain rather than indirectly via (51} 1o (54).

The unknown parameters 0 in this case will consist of

G, =1{a,, . .,8,Cp .. .Cut 0" and the iniial state
T - . .

Py = I~ ¥Y_1 e .= YoMy - Mgl - For simplicity, in

the sequel, we assume 1, Is known and fixed.

With Gaussian neise, the log-likelihood function then tarns out

to be

. 2
146} = constant — Z(g{(? ) ) (78)

t=1

it is possible to maximize (78} directly in terms of & (see Ljung
(1983)). However, we see from (78) that L(B} is anon-quadratic
function of 6. This leads us to ask if it might be possible to define
the complete data sequence in such a way that the M step in the
EM algorithm is straightforward,

We note that (74) can be expanded as

yo= gl 79
where
@ = [ Yoo = Yooz o0 = Yoo Micps o5 Theal (80)
We now define the complete data log likelihood as

loglprob{yv,, . .¥n.T ~ .NrH {(81)

= constant + log[prob(y . noprob{y.. Maly ., M)

ooy Ml e Yoo il

v
22()’1—@?—181}. - :2'}:]03 a’ (82)

=

= constant — 5



The E-step in the EM algorithm then gives

T .
Q{HU(,:‘) = copsiant — "5"(1";5'_‘(:” - ((‘)ET}) 8]) (83}
=1
- %Eog o’

- }f't—n’r}“:jr '?}[F\ ] {8'3’)

1 t=n

and where {0} is generated recursively by

LT
TR N (3)

The expression in (83) is quadratic in 8, and simple for a’,
Hence, we readily get from the M step

P (36)

=1

- & T
S DI
1w |

. ~

] LT
(}w - fwl) 95""’“) (87)

2B
!

(7]

[~

L
T

[

The remarkably simple result in (83) holds because N is com-
pletely determined by {(m™M.y, o k= 1 ..t — 1'}. This leads
to a particularly simple E step.

12 ESTIMATION USING MEASUREMENTS HAV.
ING RAMDOMLY MISSING YALUES

In the case of missing measurements, we could proceed by aug-
menting the E-step so as to “till-in” the missing measurements,
In this case, we would need to employ fixed interval smoothing
technigues 1o complete the E-step. We note that {,] satisfies
the fotlowing state space model

g, = Fopo + Gny (88)

F = 6= 269
O el :
) 0 N
0 1. :
0 -0 |0

and hence, the complete data {y.] and the measured data {y7'}
satisty

¥, = el (90

yit = fye = A0 A+ T o

where {f,} is such that {, = 1 if the data is available and is O
otherwise. We can then apply the fixed interval smoothing tech-
niques of Section 9 to evalyate the appropriate conditiopal dis-
tributions needed 1o compute the expected value of the complete
data likelihood. One additional feature is that in {89, (91), we
see that the process noise and measurement neise are correlated
whereas this was not the case in Section 7. However, the correla-
tion can be removed by substituting (91) into (89} leading fo

g = Py 4+ GO = B+ y7 = f0ip,, (92)

}J{“ - {-[@']T(P(-—l + rlnl (93)

“Then, in the E-step we obtain the following result in lieu of (33):

LA o AT
T(eiq}“}.r - (Ep![:ﬂ'l') 9

0Q(6.0%) = constant ~

200 Lo
1= 1 %

.
<
Rl .j"\ C!IE[T ;rr!‘:)L

(42 dows
L=

i
5 O

b,

2oty (94)

We see that Q(8, 0% is also quadratic in 8, and hence the M step
is again straightforward.

Apptications of this algorithm can be found in many different
areas - see for example Kuczera (1987) and Isaksson (1993).

13 ESTIMATION USING MEASUREMENTS HAV-
ING PERIODICALLY MISSING VALUES

In the above treatinent we have suggested that the EM algorithm
can be employed to deal with arbitrary patterns of missing data.
However, the generality of this approach can lead to ditficulties
in certain cases. For example, the convergence rate of the algeo-
rithm can be quite stow in the final interations. There is thus mo-
tivation lo examine special missing data patterns to see if sirapler
parameter esiimation strategies can be developed.

One such simplification occurs when the missing data has areg-
ular time pattern. This can ocear, for exampte, when there exists
acyelic (or periodic) intertuption to the flow of data. In this case,
other tools are available o deal with the missing data problem,
We briefly outline one such possibility below.

Constder again (493, (50), and assume that the available data has
a periodic time pattern. In this case, the matrix C will vary peri-
odically with time between a constant value and zero. An inter-
esting fact (Feuer and Goodwin (1993)}1 is that, in this case, the
Kaiman filter given in (51} to (54) seitles to a form i whichthe
covariance matrix £ ., is a periodic sequence. Hence, the in-
novations model (703, (71) remains valid save thatin thiscase K,
Cand o vary periodically with time. This suggests that an alter-
native, finite parameterization of the model can be achieved.
Each point of one period in the above sequences becomes a pa-
rameter to be estimated, This leads to a clear cheice an the part of
the modeller; namely, either work with the original (low dimen-
sional} parameter vector assumed for the model with no mea-
surements missing, or work with the resultant periodic parsime-
iers describing the innovation model. The latter will have more
parameters to estimate but will lead to simpler estimation algo-
rithms.

Using {¥,] todenote the predicted output at time t, then by asim-

tlar argument leading to (74, it can be shown that {y, } satisfies

— 22—



Iy

Alg Ty, = %dg Ny~ ¥ (95)
where .A(g™") isasin (75) and 36,{q "1 is

g D = kg '+ o F kg {96)

where {k;, .. ,Kkq} vary periodically. Also. note that k,, turns
outto be zero whenever the corresponding data point is missing.
Hence, if the period of the data pattern is L and, in each period,
n, values are missing, then direct parameterization of (95) leads
to n + n(L — ny) unknown constant parameters.

Eguation (93) will be recognized as a (special case) of a periodic
ARMA (PARMA) model. Once this fact has been recognized,
there are a plethora of parameter estimation methods thal can be
used - see for example Jones and Brelstord {1967), Gardner and
Franks (1975), Pagano (1978). Tiao and Grupe (1980}, Pankratz
(1983}, Vecchia (1985), Anderson and Vecchia (1993). Itis also
possibleto develop recursive algorithms that process the data se-
quentially as it arrives - see for example Adams and Goodwir
(1995). Of course it is also possible to use the EM algorithm yet
again but this will be simpler in this case due (o the reparameter-
ization in terms of the {periodically varying} innovations model
applicable to the (periodic) missing data case.

14  CONCLUSIONS

We have briefly outlined methods for state and parameter es-
timation in Hidden Markov models. We have only touched upen
discrete and continuous state problems in discrete time. Howev-
er, similar approaches hiold for continuous time equivalents and
mixed type systems, e.g. mixed continuous and discrete state
and or mixed continuous and discrete time.
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APPEMDIX A
Lemma A2 -~ Jensens Incgualify: I x is a random variable
such that By = yand f(x} Is a convex function, then

BIfx)) = HEXD (97)

with equality if and only if x is a degenerate distribution at .
Proof:  See Rao (1963)

Lemma A.2; Let{and g be non-negative and integrable func-
. . = = - &~ . .
tions with respect to a measure yand S be the region in which

> 0.1 E(-{-‘ — gidu = 0, then

g

J floghan = 0 (98)
5

with equality only when f = gla.c.)

Proof:  Let us choose the convex function — log(+). Then, by

(97) with —

1
=

;
as a distribution of (?) we have

fdp

8 = — log S| = = i()gs 99}
j fdu { fdp { fd
b J
5 8 §

S 8

V“—'z-——m_‘
_y
ol
=

} Flog(du = J fdplog S = 0

5 5 gdp

Uiq

with equality when [(f ~mdu =0 [}

5

Lemma A3
Eflog(k(xly. 8)ly. 87} = Eflog kixly, 8y, 90} (100)

Proof; Let f{x) = k{xly, 8"
gx) = k(xy, 0

then from Lemma A2
kixly, gty
X i o -
Jk(,.fy,ﬁ )ioc[ Lty O) dx =0
or

i K(xly, 8%} log[k(xly, 8% ]dx

- jk(xl)uG”’J}logik(xly,{'})]dx =0

From which the result follows immediatety
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